数理統計学 西 山.

Slides:



Advertisements
Similar presentations
統計学の基礎 -何を学ぶか。 何ができるようになるか-. データとは何か 母集団と標本(サンプル)、データの関係 統計的方法を用いることにより、統計量から母数について どれほどのことが言えるか、知ることができる。 2.
Advertisements

母平均の区間推定 ケース2 ・・・ 母分散 σ 2 が未知 の場合 母集団(平均 μ 、分散 σ 2) からの N 個の無作為標本から平均値 が得られてい る 標本平均は平均 μ 、分散 σ 2 /Nの正規分布に近似的に従 う 信頼水準1- α で区間推定 95 %信頼水準 α= % 信頼水準.
数理統計学 西 山. 前回のポイント<ルート N の法則> 1. データ(サンプル)の合計値 正規分布をあてはめる ルート N をかけて標準偏差を求める 2. データ(サンプル)の平均値 正規分布を当てはめる 定理8がポイント ルート N で割って標準偏差を求める.
ホーエル『初等統計学』 第7章4節~5節 推定 (2) 寺尾 敦 青山学院大学社会情報学部 atsushi [at] si.aoyama.ac.jp 青山学院大学社会情報学部 「統計入門」第 12 回.
1標本のt検定 3 年 地理生態学研究室 脇海道 卓. t検定とは ・帰無仮説が正しいと仮定した場合に、統 計量が t 分布に従うことを利用する統計学的 検定法の総称である。
土木計画学 第3回:10月19日 調査データの統計処理と分析2 担当:榊原 弘之. 標本調査において,母集団の平均や分散などを直接知ることは できない. 母集団の平均値(母平均) 母集団の分散(母分散) 母集団中のある値の比率(母比率) p Sample 標本平均 標本分散(不偏分散) 標本中の比率.
統計学 西山. 標本分布と推定 標準誤差 【例題】 ○○ 率の推 定 ある人気ドラマをみたかどうかを、 100 人のサンプルに対して質問したところ、 40 人の人が「みた」と答えた。社会全体 では、何%程度の人がこのドラマを見た だろうか。 信頼係数は95%で答えてください。
数理統計学 西 山. 前回の問題 ある高校の 1 年生からランダムに 5 名を選 んで 50 メートル走の記録をとると、 、 、 、 、 だった。学年全体の平均を推定しなさい. 信頼係数は90%とする。 当分、 は元の分散と一致 していると仮定する.
数理統計学 西 山. 推定には手順がある 信頼係数を決める 標準誤差を求める ← 定理8 標準値の何倍の誤差を考慮するか  95 %信頼区間なら、概ね ±2 以内  68 %信頼区間なら、標準誤差以 内 教科書: 151 ~ 156 ペー ジ.
統計学 西山. 平均と分散の標本分布 指定した値は μ = 170 、 σ 2 = 10 2 、データ数は 5 個で反復 不偏性 母分散に対して バイアスを含む 正規分布カイ二乗分布.
Q 1. ある工場で直径1インチの軸棒を標準偏差 0.03 の 管理水準で製造している。 ある日の製造品の中から 10 本の標本をとって直径を測定 したところ、平均値が インチであった。品質管理上、 軸棒の直径が短すぎるだろうか、それとも、異常なしと判断 して、製造を続けてもよいであろうか。
4. 統計的検定 ( ダイジェスト版 ) 保健統計 2014 年度. Ⅰ 仮説検定の考え方 次のような問題を考える。 2014 年のセンター試験、英語の平均点は 119 点であった。 T 高校では 3 年生全員がセンター試験を受験したが、受験生の中から 25 人を選んで調査したところ、その平均点は.
統計学 第3回 西山. 第2回のまとめ 確率分布=決まっている分布の 形 期待値とは平均計算 平均=合計 ÷ 個数から卒業! 平均=割合 × 値の合計 同じ平均値でも 同じ分散や標準偏差でも.
放射線の計算や測定における統計誤 差 「平均の誤差」とその応用( 1H) 2 項分布、ポアソン分布、ガウス分布 ( 1H ) 最小二乗法( 1H )
統計学入門2 関係を探る方法 講義のまとめ. 今日の話 変数間の関係を探る クロス集計表の検定:独立性の検定 散布図、相関係数 講義のまとめ と キーワード 「統計学入門」後の関連講義・実習 社会調査士.
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
数理統計学  第9回 西山.
看護学部 中澤 港 統計学第5回 看護学部 中澤 港
確率と統計 平成23年12月8日 (徐々に統計へ戻ります).
数理統計学 西 山.
統計解析 第7回 第6章 離散確率分布.
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
多変量解析 -重回帰分析- 発表者:時田 陽一 発表日:11月20日.
統計的仮説検定 基本的な考え方 母集団における母数(母平均、母比率)に関する仮説の真偽を、得られた標本統計量を用いて判定すること。
統計学  第7回 西 山.
第1回 担当: 西山 統計学.
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
統計学 オリエンテーション   担当: 西山.
行動計量分析 Behavioral Analysis
数理統計学  第8回 第2章のエクササイズ 西山.
数理統計学  第8回 西山.
母集団平均値の区間推定 大標本の区間推定 小標本の区間推定.
統計学 12/13(木).
母分散が既知あるいは大標本の 平均に関する統計的検定
統計学  西 山.
統計解析 第10回 12章 標本抽出、13章 標本分布.
統計学  第6回 西山.
計測工学 -測定の誤差と精度2- 計測工学 2009年5月17日 Ⅰ限目.
数理統計学 第11回 西 山.
データのバラツキの測度 レンジと四分位偏差 分散と標準偏差 変動係数.
早稲田大学大学院商学研究科 2016年1月13日 大塚忠義
母集団と標本:基本概念 母集団パラメーターと標本統計量 標本比率の標本分布
数理統計学 第4回 西山.
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
第8回授業(5/29日)の学習目標 検定と推定は、1つの関係式の見方の違いであることを学ぶ。 第3章のWEB宿題の説明
正規分布確率密度関数.
第3章 統計的推定 (その1) 統計学 2006年度.
統計学 西 山.
1.標本平均の特性値 2.母分散既知の標本平均の分布 3.大数法則と中心極限定理
標本分散の標本分布 標本分散の統計量   の定義    の性質 分布表の使い方    分布の信頼区間 
超幾何分布とポアソン分布 超幾何分布 ポアソン分布.
確率と統計 年1月12日(木)講義資料B Version 4.
数理統計学 オリエンテーション   担当: 西山.
市場調査の手順 問題の設定 調査方法の決定 データ収集方法の決定 データ収集の実行 データ分析と解釈 報告書の作成 標本デザイン、データ収集
母分散の信頼区間 F分布 母分散の比の信頼区間
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
ex-8. 平均と標準偏差 (Excel 実習シリーズ)
統計的検定   1.検定の考え方 2.母集団平均の検定.
第4章 統計的検定 (その2) 統計学 2006年度.
「アルゴリズムとプログラム」 結果を統計的に正しく判断 三学期 第7回 袖高の生徒ってどうよ調査(3)
統計学  第9回 西 山.
数理統計学 西 山.
推定と予測の違い 池の魚の体重の母平均を知りたい→推定 池の魚を無作為に10匹抽出して調査 次に釣り上げる魚の体重を知りたい→予測
小標本に関する平均の推定と検定 標本が小さい場合,標本分散から母分散を推定するときの不確実さを加味したt分布を用いて,推定や検定を行う
1.基本概念 2.母集団比率の区間推定 3.小標本の区間推定 4.標本の大きさの決定
数理統計学  第6回 西山.
数理統計学  第12回 西 山.
第3章 統計的推定 (その2) 統計学 2006年度 <修正・補足版>.
Presentation transcript:

数理統計学 西 山

第4章は<統計分析の実践>です 推定入門 区間推定の手順は決まっている 信頼係数とは? 区間推定と点推定 教科書: 第4章、150~156ページ2行目まで

【例題】推定とは? ある高校の1年生からランダムに5名を選んで100メートル走の記録をとると、 推定:イントロだけ(6/14) ある高校の1年生からランダムに5名を選んで100メートル走の記録をとると、 12.32、15.28、14.19、13.72、13.26 だった。学年全体の平均はいくら位か範囲を示して答えなさい。 当分、 は元の分散と一致 していると仮定する 点推定 誤差を無視

【例題】の解答? 学年の平均値?5人の平均値が13.75だか ら、これに一致しているさ

推定には定石があります① 出だしが肝心です

推定の定石② サンプルの平均値を標準値に 直すというのは

【例題】の解答 本当はちょっと不正確! 最初正しければ みな正し! わかっている値を代入 本当はちょっと不正確

練習問題【1】 ある高校の1年生からランダムに5名を選んで50メートル走の記録をとると、 12.32、15.28、14.19、13.72、13.26 だった。学年全体の平均を推定しなさい.信頼係数は90%とする。 当分、 は元の分散と一致 していると仮定する

ヒント: まず下の形で答えて下さい 0.90を信頼係数といいます

練習問題【1】の解答

練習問題【1’】 ある高校の1年生からランダムに5名を選んで50メートル走の記録をとると、 12.32、15.28、14.19、13.72、13.26 だった。次の解答を完成させなさい。 当分、 は元の分散と一致 していると仮定する

練習問題【1’】の解答 ・

練習問題【1’】の解答 0.68 ・ 13.26 14.24

点推定の理屈 ここまで 6/16 区間推定は、 ここをどれだけ広くとるか 標準誤差 誤差を評価しない推定を点推定といいます

練習問題【2】 ある高校の1年生からランダムに20名を選んで100メートル走の記録をとると、 だった。学年全体の平均について推定しなさい。但し、信頼係数は95%とする。

練習問題【2】の解答

推定には手順がある 信頼係数を決める 標準誤差を求める=標準偏差 まず標準値で区間をつくる 95%信頼区間なら、±2以内 90%信頼区間なら、±1.65以内 標準値の定義式で置き換える 未知数μの区間に変形する 教科書:151~156ページ

区間推定のまとめ: 95%信頼区間 標準誤差 母集団の分散が分らない場合は、不偏分散を求めて、代わりに使う 区間推定のまとめ: 95%信頼区間 標準誤差 1.96を四捨五入して2としても、推定結果はほぼ同じです 母集団の分散が分らない場合は、不偏分散を求めて、代わりに使う サンプル数が10個未満なら、必ずT分布の数値表を見て、 1.96を修正しないといけない(次回予定)

【例題】○○率の推定 ある人気ドラマをみたかどうかを、100人のサンプルに対して質問したところ、40人の人が「みた」と答えた。社会全体では、何%程度の人がこのドラマを見ただろうか。 信頼係数は95%で答えてください。

知りたいのは社会全体の視聴率です 視聴率は40%だと、 いまわかったじゃない 社会全体のことは調べてませんから、 分かりません

ゼロイチ母集団の特徴 みた → 1 みない → 0 社会全体では 30%(=0.30)がみた 本当の視聴率は 母平均(μ)のこと

ゼロイチ分布では、1の確率をpとして 平均 分散

100人サンプルの視聴率はこうなる

サンプル平均と標準誤差を求めよ! サンプル平均 標準誤差 母平均(μ)=0.40±2×0.049 95%信頼区間

サンプル数が10個未満なら、必ずT分布の数値表を見て、 区間推定のまとめ: 95%信頼区間 標準誤差 1.96を四捨五入して2としても、推定結果はほぼ同じです 母集団の分散が分らない場合は 推定値を作って、代わりに使う サンプル数が10個未満なら、必ずT分布の数値表を見て、 1.96を修正しないといけない(次回予定)

練習問題【3】 札幌地区在住者を対象に、ある人気ドラマをみたかどうかを、300人のサンプルに対して質問したところ、60人の人が「みた」と答えた。札幌圏では、何%程度の人がこのドラマを見ただろうか。区間推定をしなさい。 信頼係数は95%で答えてください。

解答のポイント サンプル平均 サンプル誤差 母平均(μ)=0.20±2×0.023 95%信頼区間