(d) ギブズ - デュエムの式 2成分混合物の全ギブスエネルギー: 化学ポテンシャルは組成に依存

Slides:



Advertisements
Similar presentations
課題 1 課題提出時にはグラフを添付すること. この反応が1次であることを示すためには、 ln ([N 2 O 5 ] 0 / [N 2 O 5 ]) vs. t のプロットが原点を通る直線となることを示せばよい。 与えられたデータから、 t [s] ln ([N.
Advertisements

医薬品素材学 I 月日講義内容担当者 4/12 1 物質の状態 I 【総論、気体の性質】 安藝 4/19 2 物質の状態 I 【エネルギー、自発的な変 化】 安藝 4/26 3 物質の状態 II 【物理平衡】安藝 5/10 4 物質の状態 II 【溶液の化学】池田 5/17 5 物質の状態 II 【電気化学】池田.
熱流体力学 第4章 番外編 熱力学的系 状態方程式 熱力学で扱う偏微分公式 熱力学の第一法則(工学系と物理系)
1 重力 力に従って落下 → E P 減少 力に逆らって上昇 → E P 増加 落下・上昇にともなう重力ポテンシャルエネルギー 変化 P32 図2-5 力が大きいほど E P の 増減は大きくなる. ポテンシャルエネルギーと力の関係.
1 今後の予定 8 日目 11 月 17 日(金) 1 回目口頭報告課題答あわせ, 第 5 章 9 日目 12 月 1 日(金) 第 5 章の続き,第 6 章 10 日目 12 月 8 日(金) 第 6 章の続き 11 日目 12 月 15 日(金), 16 日(土) 2 回目口頭報告 12 日目 12.
FUT 原 道寛 名列___ 氏名_______
4・6 相境界の位置 ◎ 2相が平衡: 化学ポテンシャルが等しい     ⇒ 2相が共存できる圧力と温度を精密に規定     ・相 α と β が平衡
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
1.ボイルの法則・シャルルの法則 2.ボイル・シャルルの法則 3.気体の状態方程式・実在気体
◎ 本章  化学ポテンシャルという概念の導入   ・部分モル量という種類の性質の一つ   ・混合物の物性を記述するために,化学ポテンシャルがどのように使われるか   基本原理        平衡では,ある化学種の化学ポテンシャルはどの相でも同じ ◎ 化学  互いに反応できるものも含めて,混合物を扱う.
医薬品素材学 I 1 物理量と単位 2 気体の性質 1-1 物理量と単位 1-2 SI 誘導単位の成り立ち 1-3 エネルギーの単位
電磁気学C Electromagnetics C 7/27講義分 点電荷による電磁波の放射 山田 博仁.
反応ギブズエネルギー  ΔrxnG (p. 128).
物質量 原子量・分子量・式量.
医薬品素材学 I 3 熱力学 3-1 エネルギー 3-2 熱化学 3-3 エントロピー 3-4 ギブズエネルギー 平成28年5月13日.
医薬品素材学 Ⅰ 相平衡と相律 (1) 1成分系の相平衡 相律 クラペイロン・クラウジウスの式 (2) 2成分系の相平衡 液相―気相平衡
化学反応式 化学反応:ある物質が別の物質に変化 反応物 → 生成物 例:酸素と水素が反応して水ができる 反応物:酸素と水素 生成物:水
課題 1.
物理化学(メニュー) 0-1. 有効数字 0-2. 物理量と単位 0-3. 原子と原子量 0-4. 元素の周期表 0-5.
シラバス説明(重要事項のみ) 到達度目標 授業計画 1.溶液中の酸化還元反応を理解し、反応式を自由に書くことができる(基礎能力)
x: 質量モル濃度を mol kg-1 単位で   表した時の数値部分 上の式は実験(近似)式であり、 ½乗に物理的な意味はない。
2009年5月28日 熱流体力学 第7回 担当教員: 北川輝彦.
医薬品素材学 I 4 物質の状態 4-1 溶液の蒸気圧 4-2 溶液の束一的性質 平成28年5月20日.
課題 1.
○ 化学反応の速度     ・ 反応のある時点(たいていは反応開始時、ξ=0)について数値      として示すことが可能
一成分、二相共存系での平衡 一成分 固液共存系    氷-水.
反応性流体力学特論  -燃焼流れの力学- 燃焼の流体力学 4/22,13 燃焼の熱力学 5/13.
◎熱力学の最も単純な化学への応用   純物質の相転移
(b) 定常状態の近似 ◎ 反応機構が2ステップを越える ⇒ 数学的な複雑さが相当程度 ◎ 多数のステップを含む反応機構
速度式と速度定数 ◎ 反応速度 しばしば反応原系の濃度のべき乗に比例 # 速度が2種の原系物質 A と B のモル濃度に比例 ⇐ 速度式
2.伝送線路の基礎 2.1 分布定数線路 2.1.1 伝送線路と分布定数線路 集中定数回路:fが低い場合に適用
◎ 本章  化学ポテンシャルという概念の導入   ・部分モル量という種類の性質の一つ   ・混合物の物性を記述するために,化学ポテンシャルがどのように使われるか   基本原理        平衡では,ある化学種の化学ポテンシャルはどの相でも同じ ◎ 化学  互いに反応できるものも含めて,混合物を扱う.
課題 1 P. 188.
課題 1 ⇒ V = VW nW + VE nE 溶液の体積を 1000 cm3 とすると、 溶液の質量は?                        水、エタノールの物質量は?
演習課題 1 (P. 137).
測定時にガラス電極の横の窓を開けるのは 電極の内部圧を開放し、ピンホール状に開いている液絡部から比較電極内部液(KCl)が染み出るようにするため KCl セラミックなどの多孔質でできています。 HCl.
燃焼の流体力学 4/22 燃焼の熱力学 5/13 燃焼流れの数値解析 5/22
課題 1.
(d) ギブズ - デュエムの式 2成分混合物の全ギブスエネルギー: 化学ポテンシャルは組成に依存
22章以降 化学反応の速度 本章 ◎ 反応速度の定義とその測定方法の概観 ◎ 測定結果 ⇒ 反応速度は速度式という微分方程式で表現
課題 熱力学関数 U, H, S, A, G の名称と定義を書け dS, dGの意味を書け ⊿U, ⊿H, ⊿G の意味を書け.
課題 熱力学関数 U, H, S, A, G の名称と定義を書け dS, dGの意味を書け ⊿U, ⊿H, ⊿G の意味を書け.
Diffusion coefficient (拡散係数)
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
FUT 原 道寛 学籍番号__ 氏名_______
FUT 原 道寛 学籍番号__ 氏名_______
課題 1 P. 188.
移動現象論II(担当 金原) 一般目標: 諸現象の定式化 定式化した結果の活用法 実装置、実現象への適用 個別目標: 物質移動現象の理解
低温物体が得た熱 高温物体が失った熱 = 得熱量=失熱量 これもエネルギー保存の法則.
◎熱力学の最も単純な化学への応用   純物質の相転移
◎ 本章  化学ポテンシャルの概念の拡張           ⇒ 化学反応の平衡組成の説明に応用   ・平衡組成       ギブズエネルギーを反応進行度に対してプロットしたときの極小に対応      この極小の位置の確定         ⇒ 平衡定数と標準反応ギブズエネルギーとの関係   ・熱力学的な式による記述.
これらの原稿は、原子物理学の講義を受講している
今後の予定 8日目 11月13日 口頭報告答あわせ,講義(5章) 9日目 11月27日 3・4章についての小テスト,講義(5章続き)
今後の予定 7日目 11月12日 レポート押印 1回目口頭報告についての説明 講義(4章~5章),班で討論
課題 1.
(解答) 式(6.12)  Δp = (ΔH / ΔV )×ln (Tf / Ti)
熱量 Q:熱量 [ cal ] or [J] m:質量 [g] or [kg] c:比熱 [cal/(g・K)] or [J/(kg・K)]
課題 1.
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
課題 1 ⇒ V = VW nW + VE nE 溶液の体積を 1000 cm3 とすると、 溶液の質量は?                        水、エタノールの物質量は?
電解質を添加したときの溶解度モデル – モル分率とモル濃度
V = VW nW + VE nE ヒント P142 自習問題5・1 溶液の体積を 1000 cm3 とすると、 溶液の質量は?
外部条件に対する平衡の応答 ◎ 平衡 圧力、温度、反応物と生成物の濃度に応じて変化する
K2 = [ln K] = ln K2 – ln K1 = K1.
課題 1.
FUT 原 道寛 学籍番号__ 氏名_______
弾力性 労働経済学.
固体→液体 液体→固体 ヒント P131  クラペイロンの式 左辺の微分式を有限値で近似すると?
ヒント (a) P. 861 表22・3 積分型速度式 のどれに当てはまるか? (b) 半減期の定義は?  
ヒント.
Presentation transcript:

(d) ギブズ - デュエムの式 2成分混合物の全ギブスエネルギー: 化学ポテンシャルは組成に依存   ⇒ 組成を微小変化させたとき2成分系の G の変化      と予想される.しかし,定圧定温ではギブスエネルギーの変化 G は状態関数 ⇒ この2式は互いに等しい すなわち、         (2成分系のギブズ - デュエムの式)

ギブズーデュエムの式 (一般式) ◎ 混合物の一つの成分の化学ポテンシャルは    他の成分の化学ポテンシャルと独立には変化できない ◎ 2成分混合物では,一方の部分モル量が増加したら,    他方は減少しなければならない ◎ すべての部分モル量について同様   (例) 水の部分モル体積が増加        ⇔ エタノールの方は減少

x: 質量モル濃度を mol kg-1 単位で   表した時の数値部分 上の式は実験(近似)式であり、 ½乗に物理的な意味はない。   → 式の上では x は無次元数

∫ dvA = -∫ (nB/nA) dvB (i) 積分区間  始点     終点 左辺   vA* (純粋なA) vA          右辺    0 (Bはない)  vB (i)式の左辺= vA - vA*

∫ dvA = -∫ (nB/nA) dvB (i)   vB = 32.280 + 18.216 x1/2 に置換  → dvB = {(1/2)×18.216 x -1/2} dx = 9.108 x -1/2 dx (i)式の右辺 = - ∫ (nB/nA) (9.108 x -1/2 ) dx 積分区間  始点     終点          vB     0 (Bはない)  vB x      0 x

x nA × MA = 1 kg 水

課題 1

5・2 混合の熱力学 ◎ 混合物のギブスエネルギーの組成への依存性 ◎ 定温,定圧では系はギブズエネルギーが低い方へ向かう    同じ容器に導入された2種の気体    自発的に混合    G の減少に対応していなければならない (a) 完全気体の混合のギブズエネルギー ◎ 純粋な気体の化学ポテンシャル   Gm(p) = Gm + R T ln ( p / p ) (p.111 , 3・57)    化学ポテンシャルの定義    ⇒                            1 bar の純粋な気体を表す       標準化学ポテンシャル

圧力 p を   に相対的な圧力で表す(すなわち p [bar] と表す)と、 混合前の系の全ギブズエネルギー 混合後のそれぞれの気体の分圧 : pA,  pB (pA + pB = p) 全ギブスエネルギー この差 Gf-Gi : 混合のギブズエネルギー

nJ → xJ n (xJ: モル分率、n: A, B合計の総物質量), pJ / p = xJ ◎ モル分率 < 1      ⇒ 対数部分はともに負    ⇒ ΔmixG  < 0    ⇒ 完全気体はあらゆる組成で自発的に混合

課題 2

(b) 混合に関する他の熱力学関数                   (                              )      ⇒         混合エントロピー   ◎ 対数部分はともに負      ⇒ すべての混合割合に対してΔmixS >0 (例) 気体が等量 (xA = xB = ½ )        ΔmixS = n R ln2    混合エンタルピー        ΔmixG = ΔmixH - T ΔmixS 、上の2式より、   ΔmixH = 0