外部条件に対する平衡の応答 ◎ 平衡 圧力、温度、反応物と生成物の濃度に応じて変化する

Slides:



Advertisements
Similar presentations
課題 1 課題提出時にはグラフを添付すること. この反応が1次であることを示すためには、 ln ([N 2 O 5 ] 0 / [N 2 O 5 ]) vs. t のプロットが原点を通る直線となることを示せばよい。 与えられたデータから、 t [s] ln ([N.
Advertisements

医薬品素材学 I 月日講義内容担当者 4/12 1 物質の状態 I 【総論、気体の性質】 安藝 4/19 2 物質の状態 I 【エネルギー、自発的な変 化】 安藝 4/26 3 物質の状態 II 【物理平衡】安藝 5/10 4 物質の状態 II 【溶液の化学】池田 5/17 5 物質の状態 II 【電気化学】池田.
22 ・ 3 積分形速度式 ◎ 速度式: 微分方程式 ⇒ 濃度を時間の関数として得るためには積分が必要 # 複雑な速度式 数値積分 (コンピューターシミュ レーション) # 単純な場合 解析的な解(積分形速度式) (a)1 次反応 1次の速度式 の積分形 [A] 0 は A の初濃度 (t = 0 の濃度.
1 今後の予定 8 日目 11 月 17 日(金) 1 回目口頭報告課題答あわせ, 第 5 章 9 日目 12 月 1 日(金) 第 5 章の続き,第 6 章 10 日目 12 月 8 日(金) 第 6 章の続き 11 日目 12 月 15 日(金), 16 日(土) 2 回目口頭報告 12 日目 12.
今後の予定 7日目 11月 4日 口頭報告レポート押印 前回押印したレポートの回収 口頭報告の進め方についての説明 講義(4章),班で討論
4・6 相境界の位置 ◎ 2相が平衡: 化学ポテンシャルが等しい     ⇒ 2相が共存できる圧力と温度を精密に規定     ・相 α と β が平衡
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
1.ボイルの法則・シャルルの法則 2.ボイル・シャルルの法則 3.気体の状態方程式・実在気体
◎ 本章  化学ポテンシャルという概念の導入   ・部分モル量という種類の性質の一つ   ・混合物の物性を記述するために,化学ポテンシャルがどのように使われるか   基本原理        平衡では,ある化学種の化学ポテンシャルはどの相でも同じ ◎ 化学  互いに反応できるものも含めて,混合物を扱う.
医薬品素材学 I 1 物理量と単位 2 気体の性質 1-1 物理量と単位 1-2 SI 誘導単位の成り立ち 1-3 エネルギーの単位
反応ギブズエネルギー  ΔrxnG (p. 128).
医薬品素材学 I 3 熱力学 3-1 エネルギー 3-2 熱化学 3-3 エントロピー 3-4 ギブズエネルギー 平成28年5月13日.
医薬品素材学 Ⅰ 相平衡と相律 (1) 1成分系の相平衡 相律 クラペイロン・クラウジウスの式 (2) 2成分系の相平衡 液相―気相平衡
課題 1.
x: 質量モル濃度を mol kg-1 単位で   表した時の数値部分 上の式は実験(近似)式であり、 ½乗に物理的な意味はない。
2009年5月28日 熱流体力学 第7回 担当教員: 北川輝彦.
スパッタ製膜における 膜厚分布の圧力依存性
医薬品素材学 I 4 物質の状態 4-1 溶液の蒸気圧 4-2 溶液の束一的性質 平成28年5月20日.
薬学物理化学Ⅲ 平成28年 4月15日~.
課題 1.
アンモニア(アミン類) 配位結合:結合を形成する2つの原子の一方からのみ結合電子が分子軌道に提供される化学結合。
○ 化学反応の速度     ・ 反応のある時点(たいていは反応開始時、ξ=0)について数値      として示すことが可能
一成分、二相共存系での平衡 一成分 固液共存系    氷-水.
反応性流体力学特論  -燃焼流れの力学- 燃焼の流体力学 4/22,13 燃焼の熱力学 5/13.
(b) 定常状態の近似 ◎ 反応機構が2ステップを越える ⇒ 数学的な複雑さが相当程度 ◎ 多数のステップを含む反応機構
22・5 反応速度の温度依存性 ◎ たいていの反応 温度が上がると速度が増加 # 多くの溶液内反応
生物機能工学基礎実験 2.ナイロン66の合成・糖の性質 から 木村 悟隆
速度式と速度定数 ◎ 反応速度 しばしば反応原系の濃度のべき乗に比例 # 速度が2種の原系物質 A と B のモル濃度に比例 ⇐ 速度式
◎ 本章  化学ポテンシャルという概念の導入   ・部分モル量という種類の性質の一つ   ・混合物の物性を記述するために,化学ポテンシャルがどのように使われるか   基本原理        平衡では,ある化学種の化学ポテンシャルはどの相でも同じ ◎ 化学  互いに反応できるものも含めて,混合物を扱う.
早稲田大学理工学部 コンピュータネットワーク工学科 山崎研B4 大野遙平
課題 1 P. 188.
演習課題 1 (P. 137).
2009年5月21日 熱流体力学 第6回 担当教員: 北川輝彦.
課題 1.
(d) ギブズ - デュエムの式 2成分混合物の全ギブスエネルギー: 化学ポテンシャルは組成に依存
22章以降 化学反応の速度 本章 ◎ 反応速度の定義とその測定方法の概観 ◎ 測定結果 ⇒ 反応速度は速度式という微分方程式で表現
課題 1 課題提出時にはグラフを添付すること.
(昨年度のオープンコースウェア) 10/17 組み合わせと確率 10/24 確率変数と確率分布 10/31 代表的な確率分布
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
ダイナミックシミュレーションの活用と課題
連続体とは 連続体(continuum) 密度*が連続関数として定義できる場合
FUT 原 道寛 学籍番号__ 氏名_______
FUT 原 道寛 学籍番号__ 氏名_______
課題 1 P. 188.
(d) ギブズ - デュエムの式 2成分混合物の全ギブスエネルギー: 化学ポテンシャルは組成に依存
低温物体が得た熱 高温物体が失った熱 = 得熱量=失熱量 これもエネルギー保存の法則.
課題 1.
◎ 本章  化学ポテンシャルの概念の拡張           ⇒ 化学反応の平衡組成の説明に応用   ・平衡組成       ギブズエネルギーを反応進行度に対してプロットしたときの極小に対応      この極小の位置の確定         ⇒ 平衡定数と標準反応ギブズエネルギーとの関係   ・熱力学的な式による記述.
今後の予定 (日程変更あり!) 5日目 10月21日(木) 小テスト 4日目までの内容 小テスト答え合わせ 質問への回答・前回の復習
22・3 積分形速度式 ◎ 速度式: 微分方程式 ⇒ 濃度を時間の関数として得るためには積分が必要
近代化学の始まり ダルトンの原子論 ゲイリュサックの気体反応の法則 アボガドロの分子論 原子の実在証明.
これらの原稿は、原子物理学の講義を受講している
22・3 積分形速度式 ◎ 速度式: 微分方程式 ⇒ 濃度を時間の関数として得るためには積分が必要
今後の予定 8日目 11月13日 口頭報告答あわせ,講義(5章) 9日目 11月27日 3・4章についての小テスト,講義(5章続き)
今後の予定 7日目 11月12日 レポート押印 1回目口頭報告についての説明 講義(4章~5章),班で討論
課題 1 課題提出時にはグラフを添付すること.
(解答) 式(6.12)  Δp = (ΔH / ΔV )×ln (Tf / Ti)
熱量 Q:熱量 [ cal ] or [J] m:質量 [g] or [kg] c:比熱 [cal/(g・K)] or [J/(kg・K)]
課題 1 課題提出時にはグラフを添付すること.
課題 1 課題提出時にはグラフを添付すること.
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
課題 1 課題提出時にはグラフを添付すること.
電解質を添加したときの溶解度モデル – モル分率とモル濃度
V = VW nW + VE nE ヒント P142 自習問題5・1 溶液の体積を 1000 cm3 とすると、 溶液の質量は?
K2 = [ln K] = ln K2 – ln K1 = K1.
課題 1.
FUT 原 道寛 学籍番号__ 氏名_______
固体→液体 液体→固体 ヒント P131  クラペイロンの式 左辺の微分式を有限値で近似すると?
ヒント (a) P. 861 表22・3 積分型速度式 のどれに当てはまるか? (b) 半減期の定義は?  
ヒント.
Presentation transcript:

外部条件に対する平衡の応答 ◎ 平衡 圧力、温度、反応物と生成物の濃度に応じて変化する ◎ 平衡    圧力、温度、反応物と生成物の濃度に応じて変化する ◎ 平衡定数   触媒や酵素(生物学的触媒)の存在で影響を受けない ◎ 触媒      平衡に達する速度を増加させる             平衡の位置には影響しない ◎工業的な反応 平衡に達することはめったにない (反応物の混合速度)

7・3 平衡に対する圧力の影響 ◎ 平衡定数 K 標準圧力で定義される に依存 ⇒ 平衡が達成される圧力には依存しない 7・3 平衡に対する圧力の影響 ◎ 平衡定数 K   標準圧力で定義される      に依存 ⇒ 平衡が達成される圧力には依存しない ◎ 平衡組成 圧力のかけ方に依存    ・不活性な気体(完全気体)の注入        反応気体の分圧はすべて不変           → 平衡組成に影響なし    ・圧縮  反応気体の分圧が変化        分圧比(平衡定数の式に表れる比)は不変      (例)         pAの増加がpBの2乗の増加に対応            ⇒ A の分子数が増加

ルシャトリエの原理 平衡にある系に撹乱が加わると、系はその撹乱の効果を なるべく小さくするように応答する. ◎ 平衡にある系を圧縮 ◎ 平衡にある系を圧縮       ⇒ 圧力増加を最小にするように反応が調節をはかる        気相にある粒子数を減少させる                      の移行が起こる

圧縮の影響の定量化  初期量          A: n B: 0  平衡時の解離度    α  平衡時の量       A: n(1-α) B: 2 nα  モル分率  平衡定数

課題 1

7・4 平衡の温度による変化 ◎ ルシャトリエの原理からの予想 発熱反応: 温度上昇で反応物が増える 7・4 平衡の温度による変化 ◎ ルシャトリエの原理からの予想    発熱反応:  温度上昇で反応物が増える    吸熱反応:  温度上昇で生成物が増える     ⇒  変化の定量化 ファントホフの式

◎ 標準状態で発熱の反応                     ⇒         ln K & K 温度上昇とともに減少 発熱反応の場合には平衡は生成物の側から遠ざかるようにずれる. 吸熱反応の場合には反対になる.  

課題 2

(b) べつの温度での K の値 ◎ ある温度 T1, 平衡定数 K1 の値 ⇒ べつの温度 T2 における平衡定数 K2 をその二つの温度のあいだで積分 が一定と見なせる範囲では、  

課題 3

次回より反応速度論 アトキンス下巻を持参すること 次回より反応速度論 アトキンス下巻を持参すること