(解答) 式(6.12)  Δp = (ΔH / ΔV )×ln (Tf / Ti)

Slides:



Advertisements
Similar presentations
課題 1 課題提出時にはグラフを添付すること. この反応が1次であることを示すためには、 ln ([N 2 O 5 ] 0 / [N 2 O 5 ]) vs. t のプロットが原点を通る直線となることを示せばよい。 与えられたデータから、 t [s] ln ([N.
Advertisements

22 ・ 3 積分形速度式 ◎ 速度式: 微分方程式 ⇒ 濃度を時間の関数として得るためには積分が必要 # 複雑な速度式 数値積分 (コンピューターシミュ レーション) # 単純な場合 解析的な解(積分形速度式) (a)1 次反応 1次の速度式 の積分形 [A] 0 は A の初濃度 (t = 0 の濃度.
1 重力 力に従って落下 → E P 減少 力に逆らって上昇 → E P 増加 落下・上昇にともなう重力ポテンシャルエネルギー 変化 P32 図2-5 力が大きいほど E P の 増減は大きくなる. ポテンシャルエネルギーと力の関係.
1 今後の予定 8 日目 11 月 17 日(金) 1 回目口頭報告課題答あわせ, 第 5 章 9 日目 12 月 1 日(金) 第 5 章の続き,第 6 章 10 日目 12 月 8 日(金) 第 6 章の続き 11 日目 12 月 15 日(金), 16 日(土) 2 回目口頭報告 12 日目 12.
今後の予定 7日目 11月 4日 口頭報告レポート押印 前回押印したレポートの回収 口頭報告の進め方についての説明 講義(4章),班で討論
FUT 原 道寛 名列___ 氏名_______
4・6 相境界の位置 ◎ 2相が平衡: 化学ポテンシャルが等しい     ⇒ 2相が共存できる圧力と温度を精密に規定     ・相 α と β が平衡
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
1.ボイルの法則・シャルルの法則 2.ボイル・シャルルの法則 3.気体の状態方程式・実在気体
医薬品素材学 I 1 物理量と単位 2 気体の性質 1-1 物理量と単位 1-2 SI 誘導単位の成り立ち 1-3 エネルギーの単位
反応ギブズエネルギー  ΔrxnG (p. 128).
医薬品素材学 I 3 熱力学 3-1 エネルギー 3-2 熱化学 3-3 エントロピー 3-4 ギブズエネルギー 平成28年5月13日.
医薬品素材学 Ⅰ 相平衡と相律 (1) 1成分系の相平衡 相律 クラペイロン・クラウジウスの式 (2) 2成分系の相平衡 液相―気相平衡
課題 1.
x: 質量モル濃度を mol kg-1 単位で   表した時の数値部分 上の式は実験(近似)式であり、 ½乗に物理的な意味はない。
医薬品素材学 I 4 物質の状態 4-1 溶液の蒸気圧 4-2 溶液の束一的性質 平成28年5月20日.
5章 物質の三態(気体・液体・固体)と気体の法則 2回
課題 1 P. 188 解答 ΔvapS = ΔvapH / T より、 T = ΔvapH / ΔvapS 解答
課題 1.
○ 化学反応の速度     ・ 反応のある時点(たいていは反応開始時、ξ=0)について数値      として示すことが可能
一成分、二相共存系での平衡 一成分 固液共存系    氷-水.
H25年度 基礎薬学特別講義 I 反応速度 CBT精選問題 平成25年10月24日.
◎熱力学の最も単純な化学への応用   純物質の相転移
科学的方法 1) 実験と観察を重ね多くの事実を知る 2) これらの事実に共通の事柄を記述する→法則 体積と圧力が反比例→ボイルの法則
速度式と速度定数 ◎ 反応速度 しばしば反応原系の濃度のべき乗に比例 # 速度が2種の原系物質 A と B のモル濃度に比例 ⇐ 速度式
2.2.1 ブラベー格子 単位格子:原子が配列している周期的な配列の中で最も     単純で最小な単位    
回帰分析の結果、直線の傾きは ×104 と求められ、 EA = -(傾き)×R = (2.71×104)×8.31
早稲田大学理工学部 コンピュータネットワーク工学科 山崎研B4 大野遙平
蒸気圧と沸点 『水の沸点は変化する』.
課題 1 P. 188.
課題 1 ⇒ V = VW nW + VE nE 溶液の体積を 1000 cm3 とすると、 溶液の質量は?                        水、エタノールの物質量は?
演習課題 1 (P. 137).
水系の2,2’-アゾビスイソブチロニトリル(ABN) の分析法
地学b 第5回雲と降水 Koji Yamazaki (山崎孝治)
課題 1.
(d) ギブズ - デュエムの式 2成分混合物の全ギブスエネルギー: 化学ポテンシャルは組成に依存
EQ-5Dの回答の効用値への換算表(Tariff)の一例
課題 1 課題提出時にはグラフを添付すること.
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
課題 1 P. 188.
(d) ギブズ - デュエムの式 2成分混合物の全ギブスエネルギー: 化学ポテンシャルは組成に依存
低温物体が得た熱 高温物体が失った熱 = 得熱量=失熱量 これもエネルギー保存の法則.
課題 1.
◎熱力学の最も単純な化学への応用   純物質の相転移
◎ 本章  化学ポテンシャルの概念の拡張           ⇒ 化学反応の平衡組成の説明に応用   ・平衡組成       ギブズエネルギーを反応進行度に対してプロットしたときの極小に対応      この極小の位置の確定         ⇒ 平衡定数と標準反応ギブズエネルギーとの関係   ・熱力学的な式による記述.
気体を用いた荷電粒子検出器 内容: 1.研究の目的 2.気体を用いた荷電粒子検出器 3.霧箱でのα線の観察 柴田・陣内研究室 4.今後の予定
今後の予定 (日程変更あり!) 5日目 10月21日(木) 小テスト 4日目までの内容 小テスト答え合わせ 質問への回答・前回の復習
22・3 積分形速度式 ◎ 速度式: 微分方程式 ⇒ 濃度を時間の関数として得るためには積分が必要
モル(mol)は、原子・分子の世界と 日常世界(daily life)をむすぶ秤(はかり)
近代化学の始まり ダルトンの原子論 ゲイリュサックの気体反応の法則 アボガドロの分子論 原子の実在証明.
22・3 積分形速度式 ◎ 速度式: 微分方程式 ⇒ 濃度を時間の関数として得るためには積分が必要
今後の予定 7日目 11月12日 レポート押印 1回目口頭報告についての説明 講義(4章~5章),班で討論
課題 1 N3H N3H 3 3 N2 H2 N2 H2.
課題 1.
課題 1 課題提出時にはグラフを添付すること.
熱量 Q:熱量 [ cal ] or [J] m:質量 [g] or [kg] c:比熱 [cal/(g・K)] or [J/(kg・K)]
課題 1 課題提出時にはグラフを添付すること.
課題 1 課題提出時にはグラフを添付すること.
課題 1.
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
課題 1 ⇒ V = VW nW + VE nE 溶液の体積を 1000 cm3 とすると、 溶液の質量は?                        水、エタノールの物質量は?
課題 1 課題提出時にはグラフを添付すること.
電解質を添加したときの溶解度モデル – モル分率とモル濃度
V = VW nW + VE nE ヒント P142 自習問題5・1 溶液の体積を 1000 cm3 とすると、 溶液の質量は?
外部条件に対する平衡の応答 ◎ 平衡 圧力、温度、反応物と生成物の濃度に応じて変化する
K2 = [ln K] = ln K2 – ln K1 = K1.
課題 1.
固体→液体 液体→固体 ヒント P131  クラペイロンの式 左辺の微分式を有限値で近似すると?
ヒント (a) P. 861 表22・3 積分型速度式 のどれに当てはまるか? (b) 半減期の定義は?  
ヒント.
Presentation transcript:

(解答) 式(6.12)  Δp = (ΔH / ΔV )×ln (Tf / Ti) ここで、 ΔtransH = 0.368×103 [J mol-1]、 ΔV = 6.957×10-6 [m3 mol-1] Ti = 95.5 + 273.2 = 368.7 [K], Tf = 100 + 273.2 = 373.2 [K] より、   2 従って、Δp = (0.368×103) / (6.957×10-6) ×ln(373.2/368.7) = 6.416×105 [Pa] 必要な圧力は (1.01 + 6.42)×105 [Pa] = 7.43×105 [Pa] = 7.4 [atm] 問題6.19の結果とよく一致している

解答 クラウジウス・クラペイロン式が適用できるのは、気相と他の相の変化である 従って、上で適用できるのは、(a), (b), (h) である

解答 クライジウス・クラペイロン式 1-ブタノールの25℃における蒸気圧 p, 標準沸点ではpo (=1 atm) ln (p / po) = -(45.90×103) / 8.314 ×{(1/ (273.2+25) -1/ (273.2+117.2)}            = -4.372    よって p / po = e-4.372 = 1.262 ×10-2 [-] p = 1.26×10-2 [atm]  (= 1.27 [kPa] = 9.59 [mmHg]) 他の物質についても同様に計算し、結果をまとめると表のようになる。 よって蒸気圧の順序は t-BuOH > 2-BuOH > i-BuOH > 1-BuOH となり、 蒸発エンタルピー、沸点の低い順と一致する。 ΔvapH Tb p/po p [kJ/mol] [℃] [×10-2] [kPa] [mmHg] 1-BuOH 45.90 117.2 1.26 1.27 9.59 2-BuOH 44.82 99.5 2.70 2.73 20.5 i-BuOH 45.76 108.1 1.79 1.81 13.6 t-BuOH 43.57 82.3 5.89 5.95 44.7

解答 (a) 2つ (斜方晶、単斜晶)   (b) 斜方晶 (298 K, 1atm) (c) 斜方晶→単斜晶→液体→気体    の順に相変化する